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Abstract 
 

A series of amino acid based bioanalogous polymers have been synthesized by 

Dr. C. C. Chu at Cornell University for future use in biomedical applications.  These 

poly(ester amide)s have been designed to be bioabsorbable, with particular interest in 

internal fixation and drug delivery applications.  The polymers PEA 4-Phe-4, 4-Phe-Das, 

and 8-Phe-Das were studied; however, due to better material properties, the focus mainly 

centered on 4-Phe-4.  Since these are new polymers, processing conditions needed to be 

determined and the structure and properties characterized.  The fibers were also 

processed post-extrusion in an effort to induce orientation and crystallinity within the 

polymer chains. 

All three PEAs were extruded into monofilament fibers by way of a single-screw 

extruder.  The 4-Phe-4 was processed at temperatures ranging from 150° – 195°C, and 

the 4-Phe-Das and 8-Phe-Das were processed at 135° and 140° C respectively.  Post-

extrusion drawing and annealing resulted in an increase  in orientation, however 

crystallinity could not be induced by these methods.  A nucleating agent was mixed with 

the 4-Phe-4 which seemed to result in an increase in the elastic modulus of the fiber.  As 

with the drawing and annealing, the polymer remained amorphous following the addition 

of the nucleating agent.  

Basic material properties were obtained for all three polymers.  PEA 4-Phe-4 has 

a Tg of 59°C and a Tm of 109°C in its as received form.  Once spun, the Tm disappears 

and the Tg lowers to 52±1.5°C.  This loss of Tm corresponds to wide angle x-ray 

diffraction data collected and reinforces that the fibers are indeed amorphous.  The 4-Phe-

4 fibers have an elastic modulus ranging from 1606±188 MPa for the as spun fiber to 
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1919±203 MPa for the most highly drawn fiber.  Similarly, the yield strength ranges from 

11.4±0.75 – 113.1±22 MPa, and ultimate tensile strength ranges from 73±5 – 215±22 

MPa.  Birefringence ranges from 0.0026±0.00023 – 0.01812±0.00053.  Dilute solution 

viscosity measurements provide an intrinsic viscosity of 0.55 dL/g for the as received 

polymer and 0.44 dL/g for the spun fibers.   

Sodium benzoate was used as a nucleating agent during melt spinning.  Once the 

nucleating agent was mixed with the 4-Phe-4, the Tg decreased further to 48°C.  As 

before, there was no Tm present, which was confirmed by the WAXD data.  The elastic 

modulus increased to 4246±430 MPa for the spun fiber and 5763±458 MPa for the fibers 

most highly drawn.  The yield strength is within the same range as the original 4-Phe-4 

fiber within reasonable error, ranging from 52±13 – 101.5±5 MPa. The ultimate tensile 

strength decreased, however, ranging from 63.5±2 – 122±17 MPa.  Birefringence values 

were also slightly lower than the pure 4-Phe-4, ranging from 0.00168±0.00012 – 

0.01488±0.0017.   

Finally, pure 4-Phe-4 was compression molded into film and drawn using a 

biaxial stretcher.  Birefringence measurements for the drawn film are low compared to 

similar draw ratios in the fiber, ranging from 0.0011±0.00006 – 0.0042±0.00021.  These 

drawn film samples were also subjected to creep testing using a DMA.  Results show that 

4-Phe-4 creeps at 37°C under a constant load.   

The 4-Phe-Das and 8-Phe-Das behaved similarly throughout testing.  Both 

polymers have low intrinsic viscosities (0.27 dL/g for both.  The Tg for both is 

approximately 40°C in the as received form, and 58±0.5°C once spun into fiber.  As spun 

4-Phe-Das fibers have an elastic modulus of 2337±518 MPa, an ultimate tensile strength 
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of 100±8 MPa, and a birefringence of 0.00341±0.0023.  Corresponding data for 8-Phe-

Das fibers reveal an elastic modulus of 1761±407 MPa, an ultimate tensile strength of 

63±6 MPa, and a birefringence of 0.00103±0.0003.   

Drawing appeared to provide some short range order and orientation within both 

the pure and nucleated 4-Phe-4 fibers. This can be seen to some extent through WAXD, 

but is most noticeable in the birefringence data.  This chain orientation also leads to a 

significant increase in mechanical properties.  Due to extreme brittleness, the 4-Phe-Das 

and 8-Phe-Das polymers were unable to be drawn, and their mechanical and optical 

properties suffered.  Annealing did not have as great of an effect on the mechanical 

properties as drawing, but shrinkage tests conducted in heated water confirm that 

annealing helps to stabilize the fiber length and reduces shrinkage when heated above the 

Tg of the polymer. 

The method of processing seemed to give the 4-Phe-4 fibers an advantage over 

the film when measuring their optical properties.  Both fiber and film were drawn to 

similar draw ratios, yet the birefringence values of the drawn fiber are much higher than 

those of the drawn film.  It seems that the initial orientation provided by the melt 

spinning processes lead to greater orientation during drawing.  It is also likely that the 

higher draw temperatures for the film allowed the chains more freedom during drawing, 

therefore lowering their overall orientation. 

Creep studies conducted at physiological temperature (37°C) show that the 4-Phe-

4 film creeps significantly under constant load for prolonged periods of time.  This may 

make the idea of application in a drug delivery system more feasible than internal 

fixation.  
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Chapter 1. Introduction 
 

Interest in reducing wound healing time with drug delivery devices and 

preventing multiple surgeries due to a need to remove internal fixation implants has lead 

to the need for biodegradable polymers that are biocompatible both as a whole and as 

they degrade.  Therefore, polymers composed of naturally occurring building blocks are 

gaining popularity for use in biomedical applications.  In addition to good 

biocompatibility, these materials need to be affordable during synthesis, processing, and 

while undergoing purification and sterilization.  With these goals in mind, a new series of 

poly(ester amide)s is being developed by Dr. C. C. Chu at Cornell University.  These 

advanced PEAs are biologically active, and have promising biocompatibility properties.  

The basic tasks considered throughout the entirety of this project are: chemical synthesis 

of the new PEAs with characterization of their chemical, physical, and thermal 

properties, melt spin these PEAs into fiber, fiber characterization that evaluates the 

structural, physical, mechanical, thermal, biodegradability, and morphology, in vitro 

biodegradation studies, and in vivo biodegradation studies. [16]   

The synthesis and characterization related to biodegradation, as well as the in 

vitro and in vivo studies, are being conducted by Dr. Chu and his colleagues at Cornell 

University.  The focus of this paper is the development of melt spinning conditions and 

the characterization of the resulting fiber.  A total of three PEAs were studied in this 

research, but the majority of the research focused on PEA 4-Phe-4.  The structural, 

thermal, mechanical, and optical properties were cataloged following each change in 

processing, from the initial extrusion through changes in chain conformation due to 
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annealing and drawing.  Preliminary creep studies were also conducted on compression 

molded film that had been drawn.  Effort was made throughout this study to induce 

crystallinity and orientation in order to make a more desirable fiber.  In addition to 

annealing and drawing the as spun fibers, methods for inducing crystallization during 

processing were employed.  A solution spinning processing approach was attempted for 

inducing crystallinity through solvent effects, and a nucleating agent was mixed into the 

polymer during melt spinning to attempt to grow crystals from the melt.   

 
  

2 



www.manaraa.com

Chapter 2. Literature Review 
 

2.1 Biomaterials 
Biomaterials are biocompatible materials that can be used in medical devices, and 

are intended to interact in biological systems [1].  The material’s biocompatibility means 

they are in no way toxic or harmful to the biological host environment [2].  In addition to 

basic biocompatibility, implantable polymers should be free of additives, maintain 

chemical stability during processing and sterilization, and they should not induce 

thrombosis, inflammatory encapsulation, tumor formation, or cell changes in the 

surrounding tissue.  Biodegradable polymers must be engineered so that they maintain 

their biocompatibility as they biodegrade.   For nondegradable implantable polymers, the 

material should be designed so that stability is maintained within the physiological 

environment. [3] 

 

2.2 Biodegradation 
 A change in physical properties resulting from the chemical breakdown of a 

material due to living organisms is the defining characteristic of biodegradation [3].  

Within the body, polymers are not only subjected to continuous or cyclic stresses, but 

also the biological mechanism known as immune response.  The internal environment is 

aseptic, and maintained at 37°C with a pH of 7.4.  For metals, protein adsorption on the 

surface of a device leads to an increase in the rate of corrosion.   The oxidizing agents 

and enzymes released by the cells to digest the foreign materials are of concern for all 
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materials used in medical devices [4].  The two main types of biodegradation processes 

are hydrolytic and oxidative.  

2.2.1 Hydrolytic Degradation 
 Hydrolysis, or the chain scission of susceptible functional groups due to reactions 

with water, is a single-step process that can be catalyzed by acids, bases, salts, or 

enzymes.  The functional groups that are most vulnerable to hydrolysis are carbonyls 

bonded with O, N, or S.  Examples of these include esters, amides, and carbonates.  

Hydrolytic tendencies can be suppressed through cross-linking, high crystallinity, and 

thermal annealing.  Within the body, ions in the extracellular fluid have been known to 

catalyze hydrolysis; an affect particularly noted in polyesters.  Other host response 

catalysts are localized changes in pH due to acute inflammation or infection and 

hydrolytic enzymes.  However, enzymes are designed to recognize and attack certain 

natural chain sequences.  Lacking these naturally occurring recognizable sequences, 

many synthetic polymers are resistant to enzymatic degradation [4]. 

 

2.2.2 Oxidative Degradation 
 Oxidative degradation is the chain scission of functional groups that are readily 

oxidized.  Examples of these functional groups include ethers, phenols, alcohols, 

aldehydes, and amines.  The primary host catalysts for oxidative degradation are 

phagocytic cells such as neutrophils and macrophages, which are activated by cells and 

sent to respond to injury and foreign body sites.  Both neutrophils and macrophages can 

metabolize oxygen to form a superoxide anion.  This is show in Figure 1.   

4 



www.manaraa.com

 

Figure 1. Oxidative Degradation - General Scheme 
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From here, either more powerful oxidants can be formed, or the superoxide anion can 

initiate homolytic reactions within the polymer.  These homolytic reactions allow the 

material to oxidatively degrade [4].   

 

2.3 Bioabsorbable Polymers 
 Bioabsorbable polymers are degradable materials that are particularly useful in 

short-term medical applications that only require the temporary presence of a polymer 

implant.  In literature, the terms bioabsorbable and bioresorbable are often 

interchangeable.  Their use implies that the degradation products of the material are 

processed by phagocytosis and naturally removed from the biological environment.  The 

three most common bioabsorbable polymers are poly(glycolic acid), poly(lactic acid), 

and polydioxanone.  These are already FDA approved for use in clinical studies involving 

humans, and are used routinely in medicine.  Other bioabsorbable polymers include 

polyhydroxybutyrate, polyhydroxyvalerate, polycaprolactone, polyanhydrides, poly(ortho 

ester)s, poly(amino acid)s, and poly(ester amide)s [1]. 

 

2.3.1 Bioabsorbable Polymer Applications 
Bioabsorbable polymers have seen great success in the capacity of a temporary 

scaffold.  During situations where natural tissue is weakened by disease, injury, or 

surgery, bioabsorbable polymers can be used to provide structural support to aid wound 

healing, bone repair, and damaged blood vessels.  Applications within temporary 

scaffolding include sutures, bone fixation devices, and vascular grafts.  The idea behind a 

6 



www.manaraa.com

temporary scaffold is that a gradual stress transfer will occur between the polymer and 

the healing tissue, so that as the tissue heals, the polymer slowly weakens.   

A similar application is that of the temporary barrier to prevent adhesion during 

wound healing.  Adhesion occurs between two tissues sections, and is the result of 

clotting blood.  Inflammation and fibrosis are the end results of adhesion, which can be a 

major problem following surgery.  If the tissue adheres incorrectly, pain and functional 

impairment can occur, possibly leading to further surgery to repair the bonded tissues 

interface.  Temporary barriers take the form of a thin film or mesh.  They are placed 

between adhesion-prone tissue at the time of surgery, and allow for more controlled 

wound healing.  These barriers are also used with burn victims and other skin lesion 

conditions, where artificial skin is a necessary step towards recovery. 

Drug delivery systems are implantable polymeric devices that release medicine 

slowly where it is most needed as the polymer degrades.  This is especially common 

when administering chemotherapy, because the target cells can be treated without 

damaging cells throughout the body.  There is also potential for combining the drug 

delivery with temporary scaffolds or barriers to create multifunctional devices that would 

limit surgeries and implants in patients requiring both mechanical support and site-

specific drug delivery [4].    

 

2.4 Poly(ester amide)s 
Polyesters are a common class of biodegradable polymers with typically poor 

thermal and mechanical properties.  Polyamides generally have excellent thermal and 

mechanical properties, but slow to biodegrade due to strong intermolecular interactions.  

7 
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This inertness to biodegradation is likely due to the large concentration of hydrogen 

bonds and high regularity of the polyamide structure, however the amide functional 

groups are susceptible to enzymatic degradation.  In an effort to create a biodegradable 

polymer with good thermal and mechanical properties, many new polyesteramide 

copolymers have been synthesized in recent years. [5]   

Recent interest has been concerned with creating polyesteramides (PEAs) that are 

composed of natural building blocks so that once the polymer degrades, the degradation 

products can be safely metabolized by the body.  Examples of these natural building 

blocks are α-amino acids and α-hydroxy acids.  Polyamides based on α-amino acids are 

viewed as a promising candidate for this type of polymer due to their similarities to 

natural proteins.  However there are several problems when working only with poly(α-

amino acid)s, including expensive manufacturing processes, insolubility in common 

organic solvents, thermal degradation during the melt process, and slow rates of 

biodegradation.  Poly(α-ester α-amide)s combine useful properties of poly(α-hydroxy 

acid)s and poly(α-amino acid)s, however the synthesis of this copolymer is expensive and 

complex.  In addition to low yield and low molecular weight, undesirable side reactions 

typically occur due to the severe reaction conditions needed in the ring-opening melt 

polymerization.  These side reactions lead to byproducts that would need to be eliminated 

to ensure purity of the material before it could be used in medical applications. [6] 

In this study, PEAs were synthesized in the form of an AA-BB type amino acid 

based bioanalogous polymer.  They are produced by solution polycondensation under 

mild conditions.  Due to the building blocks used, toxic catalysts are not necessary for 

polymerization.  The main benefit to this type of synthesis is reduced cost in producing 

8 
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polymers with a wide range of material properties.  Several different polymers were 

created by varying three main components:  α-amino acid, diol, and dicarboxylic acid.  A 

wide range of properties could conceivably be easily achieved through different 

combinations of these basic building blocks.  Applications could range from surgical 

implants like vascular grafts, nerve guidance tubes, absorbable bone plates, pins and 

screws, surgical meshes, and temporary artificial skin to drug delivery devices.  These 

polymers are susceptible to enzymatic biodegradation from specific enzymes (i.e. α-

chymotrypsin).  Typically, the rate of biodegradation is controlled by varying functional 

groups.  For this polymer, the rate of biodegradation is controlled by the polymethylene 

chain length of the diol.[6]   

The synthesis is achieved in a three step process: (1) preparation of di-p-

toluenesulfonic acid salts of bis (α-amino acid) α,ω-alkylene diesters, (2) preparation of 

di-p-nitrophenyl ester of dicarboxylic acids, and (3) solution polycondensation of the 

products from steps 1 and 2.  Six α-amino acids were used (L-Valine, L-Leucine, L-

Isoleucine, DL-Norleucine, L- and DL-Phenylalanine, and DL-Methionine) with three 

diols (1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol) and two dicarboxylic acyl 

chlorides (adipoyl and sebacoyl).  Other components include p-toluenesulfonic acid 

monohydrate, p-nitrophenol, N,N-dimethylacetamide, N-methyl-2-pyrrolidinon, benzene, 

nitrobenzene, ethylacetate, acetone, acetonitrile, chloroform, triethylamine, N-

methylmorpholine, N,N,N,’N,’-tetramethylethylenediamine, and pyridine. The polymers 

were named by counting the Carbons in the dicarboxylic acid (x) and diol (y), and by the 

α-amino acid (αaa) used (i.e. x-αaa-y). [6]   

9 
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A typical characteristic of all of the PEAs synthesized by this technique are given 

by FTIR data.  There are carbonyl bands at 1648-1650 cm-1 that represent amide I, 1538-

1542 that represent amide II, and 1738-1742 that represent the ester group.  There are 

also NH vibrations at 3290 cm-1.  For the PEA composed of phenylalanine, there are also 

bands at 700 and 750 cm-1 indicating the presence of the phenyl group.  There are also 

two characteristic >C==O signals from C-NMR spectra that are representative for all of 

the adipoyl PEAs, indicating no interchange reaction between the amide and ester groups 

and favoring a regular structure.  Were interchange reactions present, there would be 

more than two >C==O signals, because other types of ester and amide groups would 

form.  This favors a regular structure, because the presence of other ester and amide 

groups in the backbone would lead to an irregular structure.  Finally, the glass transition 

temperatures of all of the PEAs synthesized ranged from 11 to 59°C.  Most of the 

polymers were amorphous, however the polymers created from phenylalanine and some 

from valine exhibited semicrystalline  characteristics with a  melting temperature in the 

low 100s°C.  Low fusion temperatures from 20-130°C indicate that these PEAs could 

have an aptitude for drug delivery devices.  [6] 

Enzymatic degradation studies have been conducted primarily with α-

chymotrypsin catalyzed hydrolysis.  The enzyme α-chymotrypsin was chosen, because it 

would cleave ester linkages at the C-terminal of hydrophobic α-amino acids.  Lipase was 

also used to cleave the ester bonds of the hydrophobic substrate. [7] The high 

hydrophobicity from the benzyl side groups in the PEAs based on L-phenylalanine lead 

to the highest tendency towards α-chymotrypsin catalyzed hydrolysis.  Lengthening the 

methylene groups in the diol also lead to an increase in hydrophobicity, which in turn 
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lead to an increase in hydrolysis.  Another increase in enzymatic sensitivity occurred due 

to increasing both the x of the diols and the y of the dicarboxylic acids.  This leads to the 

conclusion that the higher the hydrophobicity of the polymer backbone, the higher the 

chance that the polymer will hydrolyze due to enzymatic degradation. [6] 

The main PEA characterized in the present study is PEA 4-Phe-4.  It is composed 

of adipic acid (C=4), L-phenylalanine (Phe), and 1,4-butanediol (C=4).  A schematic of 

the structure of 4-Phe-4 is included in Figure 2. [8]  Preliminary thermal data suggests a 

Tg of 59°C and a melting point in the low 100s°C. [6]  The 4-Phe-4 showed a higher 

susceptibility to lipase than α-chymotrypsin in degradation studies.  The 4-Phe-4 films 

were subject to surface erosion during biodegradation, but the films eroded evenly and 

retained their shape as they became uniformly thinner over time.  Biodegradation 

products were tested for toxicity by creating a matrix for a bacteriophage containing 

artificial skin.  The results suggest no acute or chronic toxicity.  Based on these tests, 

PEA 4-Phe-4 was approved for clinical trials in the Republic of Georgia. [7]  

Biocompatibility of 4-Phe-4 fibers was tested in rats and compared to the commercial 

sutures, Monocryl (from Ethicon).   

 

Figure 2. PEA 4-Phe-4 Structure 
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Fibers were implanted in the rat’s gluteal muscular area and studied of a period of several 

days (7, 14, 28, and 42 day periods).  The PEA fibers showed a significant reduction in 

tissue inflammation within all time periods in comparison to the Monocryl sutures.  [8] 

 

2.5 Fiber Spinning 
 Fibers are produced through either a melt or solution spun process that involves 

moving either the molten polymer or solution through a barrel and pushing it through a 

die.  The objective is to produce long, thin, filaments of relatively constant cross-

sectional area.  Once spun, fibers are usually strengthened by a drawing process that takes 

place at a relative high stress and low temperature for the specific polymer.  If a material 

melts without significant decomposition, the melt spinning process is used to produce 

fibers of an approximately constant cross-section [9].  If the polymer cannot be processed 

in a molten state, either a wet or dry solution spinning technique is used.   

 

2.4.1 Melt Spinning 
Melt spinning is a process that involves melting a material and extruding it 

through a die.  The polymer cools as it exits the die and solidifies into filaments that can 

be wound onto a bobbin.  A tensile force is typically applied to the polymer as it exits the 

extruder to draw the filaments down to a desired diameter [10].  The essential 

components of melt spinning are the screw and the die.   The screw serves as a pump, 

pushing the molten polymer through the barrel of the extruder.  It controls the rate of 

extrusion, and aids in mixing the still solid polymer entering the extruder with the molten 
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polymer flowing within.  The die provides the final shape of the extrudate, and depending 

on the fiber application can be single or multifilament. [11] 

 

2.4.2 Solution Spinning 
For polymers that cannot form thermally stable, viscous melts, solution spinning 

is an alternative method of processing, provided that the polymer can be dissolved in high 

enough concentration in proper solvents.  The polymer content of these solutions should 

be between 5 and 30% [12].  During solution wet spinning, a non-volatile solvent is used, 

and the solution is extruded into a bath containing non-solvents.  As the polymer passes 

through the bath, it leaves the solution and becomes a solid filament before being taken 

up on a roll.  Dry spinning utilizes a volatile solvent, which is evaporated into a gaseous 

environment during draw down [9].   

 

2.4.3 Fiber Orientation 
Orientation of the polymer chains is achieved when a fiber sample is heated above 

its Tg and drawn to a longer length.  Polymer molecules can be oriented while in the 

nearly molten state by applying a uniaxial tensile stress or unidirectional shear stress.  

When properly accomplished, the resulting polymer is stiff and strong in the draw 

direction, but is usually quite weak in the transverse direction.  If the polymer is able to 

crystallize, the orientation process encourages rapid crystallization due to the molecular 

alignment of the chains.  In these cases, the crystalline structure is linear instead of 

spherulitic [11]. 
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To determine the degree of orientation, birefringence measurements are taken of 

the fiber samples.  Birefringence (Δn) is the difference in the refractive index of a 

material in two orthogonal directions, and is measured with linearly polarized light.  The 

index of refraction (n) is defined by the ratio of the velocity of light traveling in vacuum 

to the velocity of light traveling through the material.  As light reaches the interior of 

transparent materials, it decreases in velocity and bends at the interface [13].  The degree 

of bending is dependent upon the wavelength of the light, and the orientation of the 

material.  The refractive index differs in the directions parallel and normal the chain axis 

due to differences in bonding. [14] If a polymer is a birefringent material, it will have a 

non-zero difference between the two refractive indices, and it will have a net orientation 

to yield a primary refractive index.  Due to their large degree of ordering and anisotropy, 

crystalline materials are highly birefringent.  Birefringence measurements can assess 

whether or not a material is crystalline or semi-crystalline, and if so monitor the crystal 

growth in studies of kinetics. [15]  For preferentially oriented materials, such a fibers that 

have been drawn, the birefringence equals Δn = n1 – n2 = fΔn°, where f is the Hermann’s 

orientation function, and Δn° is the intrinsic birefringence.  This orientation function is a 

quantitative measure of the degree of chain orientation. [14] 
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Chapter 3: Materials and Experimental Methods 
 

3.1 Materials 
Three poly(ester amide)s (PEAs) were provided by Dr. C. C. Chu (Cornell 

University, New York).  In total, approximately 450 grams of PEA 4-Phe-4, 630 grams 

PEA 4-L-Phe-Das, and 650 grams PEA 8-L-Phe-Das were processed and characterized.  

Throughout this paper, these polymers will be referred to as 4-Phe-4, 4-Phe-Das, and 8-

Phe-Das.  The structure for 4-Phe-4 is shown in Figure 1, but the exact composition has 

never been provided.  The structures for 4-Phe-DAS and 8-Phe-DAS were never 

provided, however based on the naming convention both are composed of phenylalanine.  

The 4-Phe-DAS is made of adipic acid, while the 8-Phe-DAS is made of sebacic acid.  

The diol building block used for these polymers is unknown.  The solvents n,n-dimethyl 

formamide (A.C.S. grade) and chloroform (HPLC grade) were used to create PEA 

solutions, and ethyl acetate (Reagent A.C.S. grade) was used in the coagulation bath.  

The nucleating agent sodium benzoate (laboratory grade powder) was also used. 

The naming convention used throughout this paper is built upon the basic polymer 

names given above.  For the spun fiber, an F is added onto the end of the name.  

Depending on further processing, a draw ratio or annealing temperature is then listed.  A 

nucleating agent was incorporated into some of the fibers.  To differentiate between these 

fibers and the original as spun fiber, an N is used instead of an F.  For the film, CM is 

used in place of F, which stands for compression molded.  Also, a U or C is placed before 

the draw ratio for the film samples to differentiate between constrained and unconstrained 

drawing conditions.  An example of each of these is shown in Table 1.   
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Table 1. Naming Convention 
Name Description 
4-Phe-4 As Received Polymer 
4-Phe-4-F As Spun Fiber 
4-Phe-4-N Nucleated As Spun Fiber 
4-Phe-4-F-2x 2x Drawn Fiber 
4-Phe-4-N-2x 2x Drawn Nucleated Fiber 
4-Phe-4-F-A68 Fiber Annealed at 68°C 
4-Phe-4-F-4x-A68 4x Drawn Fiber Annealed at 68°C 
4-Phe-4-CM Compression Molded Film 
4-Phe-4-CM-U4x 4x Drawn (Unconstrained) Film 
4-Phe-4-CM-C4x 4x Drawn (Constrained) Film 
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3.2 Processing 

3.2.1 Melt Spinning 
The as received polymer was dried under vacuum for at least 8 hours at 50°C 

prior to extrusion.  Melt spinning was conducted using a single screw Brabender extruder 

with a single filament die.  The extruder was not equipped with a constant displacement 

gear pump, or a nitrogen purge.  There were three heating zones maintained during 

extrusion: the barrel near the hopper, the central portion of the barrel, and the die.  The 

temperature settings for these zones are listed in Table 2 for each spinning process.   

Once polymer had been pushed through the barrel by the screw, a sample of the extrudate 

was taken over a period of time to determine the mass throughput.  Due to the lack of 

gear pump, mass throughput could not be kept constant, so this measurement was an 

approximation.  The Brabender extruder is shown in Figure 3. 

 

3.2.2 Solution Spinning 
The solution spinning setup consisted of a motorized press that was used to push 

the plunger of a syringe at a constant rate.  The extrudate from the syringe was pushed 

into a coagulation bath of ethyl acetate.  A take-up roll was attached to the end of the 

bath.  Solutions were made using 3 grams of as received polymer and 20 mL of solvent.  

Both chloroform and n,n-dimethyl formamide were used to create solutions. 

 

3.2.3 Compression Molding 
Thin film was formed using a Wabash (Wabash, IN) Hydraulic Press.  The platen 

heaters were set to 140°C (284°F) for the as received 4-Phe-4.   
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Table 2. Melt Spinning Parameters 
Temperatures (°C) 

Polymer Bobbin
Hopper Barrel Die 

Take Up 
Speed 
(rpm) 

1 120 180 195 296 
2 120 175 187 270 4-Phe-4-F 
3 120 172 181 240 
1 110 140 150 196 
2 110 140 150 346 4-Phe-4-N 
3 110 140 150 240 
1 100 130 135 455 4-Phe-Das 
2 100 130 135 560 
1 103 133 140 392 8-Phe-Das 
2 103 133 140 By Hand 

 
 

 

Figure 3. Brabender Extruder 
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To press the film, approximately 4 grams of polymer were placed between two sheets of 

Kapton (DuPont) polyimide film, and placed on the press.  The platens were brought 

together so that the upper platen just touched the upper sheet of Kapton.  The platens 

were held in this position for five minutes to give the polymer time to melt.   At the end 

of the melt time, the platens were brought together at a pressure of approximately 1.5 

tons for another five minutes.  Once fully pressed the platens were separated, and the 

polymer film was quenched in a room temperature water bath.  The as received polymer 

was dried under vacuum for 8 hours at an oven temperature of 70°C prior to compression 

molding. 

 

3.2.4 Post-extrusion Drawing 
Fiber samples were drawn through three sets of rotating, heated rolls.  The 

drawing apparatus is setup to take fiber directly from the bobbin, pull it across the series 

of rolls, and rewind it on a take-up roll post drawing.   For the 4-Phe-4-F, samples from 

bobbin 1 were initially drawn by hand across rolls 1 (56°C, 15 rpm) and 2 (52°C, 30 

rpm).  This was repeated to produce an approximate 4x draw ratio, and a more highly 

drawn fiber of approximately 6x.  Another round of hand drawing occurred with fiber 

from bobbin 3.  These drawn fibers are the filaments predominately used through the 

characterization tests.  Conditions for the second round of drawing were: roll 1 (48°C, 24 

rpm) and roll 2 (47°C, 40 rpm).  The 4-Phe-4-N wound much easier off the bobbin, and 

was pulled through all three sets of rolls.  The drawing conditions are included in Table 

3, while the drawing apparatus is shown in Figure 4. 

19 



www.manaraa.com

 

Table 3. Nucleated 4-Phe-4 Drawing Conditions 
Drawing Conditions 

Roll 1 Roll 2 Roll 3 Polymer Bobbin 
50 C 48 C 40 C 

2x 15 28 28 
3x 15 44 42 4-Phe-4-N 

2.5x 14 36 36 
 

 

 

 

Figure 4. Drawing Apparatus 
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3.2.5 Post-extrusion Annealing 
Fibers were annealed in a Fisher Scientific Isotemp Vacuum Oven Model 285A.  

They were annealed under vacuum for 1.5 hours at three different temperatures.  Glass 

sample holders were used to maintain constant length, as well as to ensure there could be 

no burning from the fiber coming into contact with metal.  The temperatures used were: 

77°, 72°, and 68°C for the 4-Phe-4, and 65°C and 70°C for the 4- and 8-Phe-Das.  These 

temperatures were chosen based on the DSC thermograms.  They are high enough above 

Tg to illicit  rubbery response, yet they are lower than the onset of the melting peak in the 

as received 4-Phe-4. 

 

3.2.6 Post-molding Stretching 
Compression molded film samples were cut into 59 mm squares.  To stretch the 

film, the T. M. Long biaxial stretcher heaters were set to a temperature of 110°C.  After 

loading the film, the samples were allowed a 2 minute wait to acclimate to the heat of the 

chamber before being stretched.  The samples were uniaxially stretched at a constant rate 

in both constrained and unconstrained conditions.  Biaxial stretching was not attempted.    

 

3.3 Characterization Techniques 

3.3.1 Wide Angle X-Ray Diffraction 
Wide angle diffraction patterns were collected using the Molecular Metrology 

SAXS/WAXS system.  This was accomplished by exposing the as received and fiber 

samples to radiation for 1 hour and collecting the scatter with an image plate.  The 

SAXS/WAXS system utilizes a CuKα (1.5419 Ǻ) x-ray source through a typical three-

21 



www.manaraa.com

pin-hole system.  The first pinhole has a diameter of 0.4 mm, the second is 0.2 mm, and 

the guard pinhole is 0.7 mm in diameter.  The system operates under vacuum at 45 kV 

and 0.66 mA, and uses a double focusing mirror to enhance intensity.  The sample to film 

distance is approximately 36 mm, and the image plate was scanned with a Fuji BAS-

1800II image analyzer.  The resulting pattern was converted to an intensity versus 2θ plot 

by Polar x-ray analysis software.   

 

3.3.2 Thermal Analysis (TGA and DSC) 
A Perkin Elmer Pyris 1 TGA Thermogravimetric Analyzer was used to provide a 

basic understanding of the thermal degradation of the 4-Phe-4 in nitrogen atmosphere.  

Testing was conducted from 25° to 500°C with a heating rate of 20°C/minute.  An 

aluminum pan was used to hold the sample which had an initial weight of 3.434 mg.   

To determine Tg and Tm, a Mettler Toledo Differential Scanning Calorimeter 821e 

with a nitrogen gas purge was used.  Aluminum pans were filled with 3.75 – 5.00 mg of 

polymer sample.  The lids of these pans were then crimped on, and three holes were 

poked in the top to allow for the nitrogen purge.  The system was set to run from 25° to 

160°C with a heating rate of 10°C/minute.  One trial of as received polymer was 

measured as it was heated to 160°, cooled back to 25°, and then reheated to 160°.  This 

was an attempt to discover the temperature at which the polymer crystallizes.   For this 

trial, a cooling rate of 10°C/minute was used.  The DSC instrument was calibrated using 

an indium standard (ΔH=28.45 j/g; Tm=156.61°C).  
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3.3.3 Optical Characterization (Birefringence) 
The optical birefringence of the fiber samples was measured using an Olympus 

BH-2 Polarizing microscope with a Berek compensator.  The birefringence 

measurements for the film were collected using the apparatus shown in Figure 5.  The 

procedure for both setups was the same.  A polarized film was placed between the light 

source and the sample holder.  The sample was rotated so that the points of lowest light 

emission could be found.  Once these “darkest points” were established, the sample was 

rotated 45° in both the clockwise and counterclockwise directions to measure the 

retardance.  A compensator was used to measure the retardance of the fiber or film, and 

these values were manipulated to compute the birefringence values. 

 

3.3.4 Mechanical Characterization (Tensile Testing) 
The samples were loaded into a United Calibration Corp (Huntington Beach, CA) 

tensile tester (Model: SSTM-1-E-PC) using a 10 lb load cell and a crosshead speed of 1 

in/min.  Six samples were measured for each fiber sample set.   

 

3.3.5 Dynamic Mechanical Analysis (DMA) 
Creep tests were conducted using a Perkin Elmer Diamond DMA.  A constant, 

static load of 50% of the maximum yield stress measured at room temperature was used 

for the creep tests.  This load was 2.86 N.  The Diamond DMA is set to run under 

constant strain, so in order to maintain the constant 2.86 N load, an initial force amplitude 

was set to 1000 mN, and an amplitude of oscillation during testing was set to 5.0 μm.   
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Figure 5. Film Birefringence Apparatus 
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Testing was carried out at 37°C to mimic application temperature within the body.  Total 

time for each test was 180 minutes.   

 

3.3.6 Dilute Solution Viscometry 
Degradation was tested by measuring intrinsic viscosity using a Cannon CT-1000 

Constant Temperature Bath and Ubbelohde viscometer.  The PEA was dissolved in the 

solvent dimethyl formamide (DMF) for all viscosity tests.  The solutions were composed 

of 1 g of PEA to 150 mL of DMF.  Once a sample solution was fully mixed, 10 mL was 

pipetted into the No 1: 420 Ubbelohde viscometer.  Efflux times were measured 

according to ASTM standard D2857.  The efflux time of DMF was measured before each 

sample trial set.  Each trial set included five dilutions of the original 1g PEA/150 mL 

DMF solution.  All efflux times were measured with the viscometer suspended in a 

constant temperature bath set to 30°C. 

 

3.3.7 Melt Flow Indexing 
To determine melt flow rate, the Dynisco: Kayeness Polymer Test Systems Series 

4000 Melt Flow Indexer was used.  The melt flow indexer was used several times with 

barrel temperatures  ranging from 120° – 230°C for each trial.  The load was constant at 

2.16 kg.  The die was plugged while the polymer melted to ensure that there was no loss 

before the trial began.  Each melt flow rate measured was taken with a cut time of 60 

seconds.  Approximately 4 grams of polymer was used for each trial. 
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3.3.8 Hydrolysis and other Reactions to Water 
Hydrolysis studies were conducted on 4-Phe-4 2x spun fibers.  Water 

temperatures were set to 40°C in a 1L beaker.  Strands of fiber were tied to a 2 ½ inch 

sample holder and submerged for varying periods of time.  Exposure times were 1 hour, 1 

day, 5 days, and 10 days.  Once removed, the samples were placed on slides and optical 

birefringence measurements were used to determine changes in orientation due to water 

interactions. 

Shrinkage tests were conducted on 4-Phe-4 as spun and drawn fibers.  This 

process was accomplished by filling a 1L beaker with water and heating it to 75°C.  A 

small metal ring weighing 0.223 g was tied to the end of a single strand of the 6x drawn 

fiber from spun bobbin 1.  Two marks were drawn on the strand in red ink 2 inches apart.  

The metal ring was dipped into the 75° water until the two red marks were submerged, 

and immediately pulled back out.  This was done to straighten the strand.  Then, holding 

the metal ring, the strand was submerged past the 2 marks for approximately 10 seconds 

and removed.  The distance between the two marks was measured, and the experiment 

was repeated with strands of undrawn fiber. 
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Chapter 4: Results and Discussion 
 

4.1 PEA 4-Phe-4 

4.1.1 Melt Flow Indexing 
Melt flow indexing was conducted to determine the melt processing conditions 

and to determine the affect of prolonged exposure to heat on the polymer.  Preliminary 

DSC tests revealed a melting peak around 110°C.  An initial temperature of 125°C was 

chosen for the melt flow barrel, because it was about 15° above the Tm and was thought 

to be a good starting point for determining melt spinning parameters.  Unfortunately, the 

polymer would not pass through the die at this low temperature.  Temperature was 

increased slowly until the polymer started to extrude, and the final temperature was near 

200°C.   

Several sets of 4-Phe-4 melt flow data were collected under different conditions.  

Three of these trials were of great interest.  The first used reheated extrudate to determine 

degradation.  Each reheated sample was subjected to the same melt (90 seconds) and cut 

times (60 seconds), however three different temperatures (190°, 200°, and 210°C) were 

used.  This trial was significant in that the amount of degradation upon reheating could be 

quantified from the viscosity data.  The second major trial was a temperature trial.  This 

was used to determine the best processing temperature for melt spinning.  The third trial 

was a time trial.  The best temperature from the second trial was used at various melt 

times.  These melt times ranged from 90 seconds to 24 minutes, the latter being more 

realistic for extruding conditions.  The results from the temperature and time trials are 

shown in Figures 6 and 7. 
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210°C 
90 s Melt 

MFR=21.5 

220°C 
90 s Melt 

MFR=28.6 

230°C 
90 s Melt 

MFR=48.2 

200°C 
90 s Melt 

MFR=18.3 

Figure 6. Melt Flow 1 
 

 

 

200°C 
3 min Melt 
MFR=27.2 

200°C 
12 min Melt 

MFR= --- 

200°C 
6 min Melt 
MFR= --- 

200°C 
24 min Melt 

MFR= --- 

200°C 
90 s Melt 

MFR=18.3 

Figure 7. Melt Flow 2 
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For some of the higher temperatures and times, the melt flow rate was unreliable 

due to the fact that all of the polymer had been expelled from the barrel before the 60 

second cut time was up.  For these samples, the melt flow rate has been left blank.  All 

melt flow rates are in units of g/10 minutes.  

From the two figures shown, it is clear that as melting temperature and time 

increase, the quality of the extrudate decreases.  In all of the extrudates, small bubbles 

were dispersed throughout the sample upon expulsion from the die.  This is seen most 

clearly in Figure 6 with the 200°C, 90s melt time sample.  The increasing of the 

temperature and melt time for the trial results shown in Figures 6 and 7 was done to try 

and eliminate these bubbles and defects, as well as to learn at what temperature the 

polymer started to degrade.  

 

4.1.2 Thermogravimetric Analysis 
TGA was performed as a preliminary test, and was only conducted in an effort to 

verify the degradation temperatures found from Melt Flow Indexing.  The polymer 

appears to undergo a very little weight loss throughout the range of temperatures used in 

the melt flow indexing study.  The onset of degradation occurs at approximately 370°C, 

as shown in Figure 8.  When compared with the MFI data presented in section 4.1.1, this 

shows that while the quality of the extrudates decreased as the temperature was raised 

above 200°C, true degradation had not become serious.  These high temperatures far 

exceed those used during melt spinning, and provide evidence that little to no degradation 

occurs during the spinning process.  
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Figure 8. 4-Phe-4 TGA Scan 
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4.1.3 Dilute Solution Viscosity 
For each sample, 10 efflux times were measured and averaged together.  The 

reduced and inherent viscosities were calculated and plotted, and the intrinsic viscosity 

was taken from the y-intercept of these two charts. 

 

Reduced Viscosity was calculated by the following equation: 

ηred=ηsp/c  c=concentration;  ηsp=(t-t0)/t0  specific viscosity.  

Inherent viscosity was calculated by the following equation: 

ηinh=(ln ηr)/c  c=concentration;  ηr=t/t0  relative viscosity. 

 

A representative chart with the reduced and inherent viscosity lines is shown in 

Figure 9.  None of the charts looked quite like the viscosity charts shown in ASTM 

D2857 due to the fact that both of the lines have a positive slope.  A representative chart 

from literature shows ηinh with a negative slope while ηred has a positive slope.   

The intrinsic viscosity data for all sample groups is shown in Table 4.  These 

values were calculated by taking the average of the y-intercept values from both the 

inherent and reduced viscosity lines. 

The intrinsic viscosity value given by Dr. Chu for the as received 4-Phe-4 

polymer was 0.7 dl/g, however the testing conditions were not provided.  All efflux times 

were measured in this study were taken in a constant temperature bath set to 30°C, 

therefore, no data was collected to discuss variation in viscosity due to temperature.   
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Figure 9. As Received 4-Phe-4 Viscosity Data 
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Table 4. Intrinsic Viscosity Values at 30°C 

Sample [η]        
dL/g 

As Received 4-Phe-4 0.55 

Spun 4-Phe-4 0.44 

Nucleated 4-Phe-4 0.51 

As Received 4-Phe-Das 0.27 

Spun 4-Phe-Das 0.27 

As Received 8-Phe-Das 0.27 

Spun 8-Phe-Das 0.26 

4-Phe-4    (24 min Melt Time) 0.47 

4-Phe-4   Reheated (190 C in MFI) 0.53 

4-Phe-4 Reheated (200 C in MFI) 0.47 

4-Phe-4 Reheated (210 C in MFI) 0.46 
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However, it would stand to reason that there would be a significant change in the intrinsic 

viscosity value as temperature is increased or decreased.  Variations in temperature could 

account for the differences between the intrinsic viscosity values measured and the values 

provided. 

The data in Table 4 shows that while many things were done to the polymer, the 

viscosity values did not change by much.  Therefore, it can be reasonably concluded that 

degradation during processing was minimal, and these results are consistent with the 

TGA data presented in Figure 8.  This is significant due to the fact that since supplies of 

the PEAs are limited, already spun fibers can be melted down and reprocessed if needed 

without much loss to the structural integrity of the polymer. 

 

4.1.4 Melt Spinning 
Based on the temperatures determined through the melt flow indexing 

experiments, PEA 4-Phe-4 was melt spun into a fairly brittle fiber.  Unlike the three 

species of PEA tested in the summer of 2003 by Hua Song, the PEA 4-Phe-4 was not 

sticky, therefore, it did not need the application of stearic acid before winding on the 

bobbin.  The lack of a regulator in the extruder meant poor regularity in fiber diameter 

throughout each bobbin.  Three bobbins were spun with an approximate fiber diameter of 

0.127±0.08 mm.   

The nucleating agent, sodium benzoate, was incorporated into some of the as 

received   4-Phe-4 in an effort to induce crystallinity.  There has been great success with 

using nucleating agents in polypropylene to regulate the size of the crystallites as well as 

the rate of crystallization.[20]  With polypropylene, many organic and inorganic 
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compounds can act as a nucleating agent during processing into fibers. [19]  In an attempt 

to mimic this process in PEA 4-Phe-4, 3.38 grams of nucleating agent was mixed 

thoroughly with 225 grams of as received 4-Phe-4 that had been run through a mill to 

decrease its particle size.  The addition of the sodium benzoate and changes in spinning 

conditions allowed for an easier spinning process, because the filament was less prone to 

breaking.  However, the fiber looked hazy from particles where perhaps the polymer had 

not fully mixed with the nucleating agent.  It is likely that increases in fiber quality and 

strength were due to improvements in the spinning conditions.  Temperatures were 

lowered approximately 40° in the die, which likely contributed to the increased 

spinnability and decreased brittleness.   

 

4.1.5 Solution Spinning 
The solution spinning setup initially involved dissolving the 4-Phe-4 in 

chloroform and using ethyl acetate as the coagulation bath.  However, the 4-Phe-4 would 

not dissolve completely into the chloroform, and instead of a solution, a gel was formed.  

Attempts were made to push the gel through a syringe into the coagulation bath, but the 

gel was too inconsistent.  The gel contained small pockets of air that disrupted the 

extrusion process.  The polymer did coagulate in the bath, but it was discontinuous and 

could not be made to form fiber.  Next, DMF was used in place of chloroform to produce 

a better solution.  The 4-Phe-4 dissolved fully into the DMF, and coagulated fairly well 

into a bath of water.  There were problems in removing excess air from the syringe and 

pushing the plunger fast enough to keep up with the flow once the solution left the 

needle.  The DMF achieved results similar to the chloroform, in that discontinuous 
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polymer coagulated, but no fiber was formed. All solutions tested so far were composed 

of 3 grams of polymer per 20 mL of solvent.  Changing the percentage of polymer in 

solution, determining the best coagulation bath for DMF, and perfecting the syringe 

method are all steps that could improve the results of this experiment.   

4.1.6 Drawing and Annealing 
For the 4-Phe-4, there are 3 drawn sample sets total.  From bobbin 2, a 2x sample 

was drawn along the machine and wound on the attached bobbin.  Bobbin 2 had a slightly 

smaller diameter due to faster take-up speeds, and produced fibers that more easily 

unwound from the bobbin.  All other pure 4-Phe-4 fibers were hand drawn across the 

rolls due to breakage issues with the fiber coming off the bobbin.  A set of 4x and 6x 

samples from bobbin 1 were hand drawn, but not closely measured for diameter, 

therefore these draw ratios are only an estimation.  These samples were subjected to 

DSC, x-ray, and shrinkage analysis.  One sample of the highly drawn 6x fiber was 

annealed at 68° and shrunk.  A final set of samples was hand drawn from bobbin 3.  

These samples were closely characterized, so accurate draw ratios are listed throughout 

this paper.  These samples were used for mechanical and optical testing. 

Four sample sets of 4-Phe-4 were annealed.  Among these, 3 have been subjected 

to DSC and x-ray analysis, and the other has been shrunk.  The results for these tests are 

included in the sub-sections below.  

The nucleated 4-Phe-4 fibers drew fairly easily compared to the fibers above.  

Breakage was still an issue, but for the most part, it occurred farther down the draw line 

and not at the bobbin.  Fiber was successfully drawn at 2x, 2.5x, and 3x draw ratios. 
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4.1.7 Differential Scanning Calorimetry 
DSC scans were taken of the 4-Phe-4 as received polymer, spun fiber, and 

modified fiber.  Of these, only the as received polymer on the initial heating displayed a 

melting temperature.   Each chart has a glass transition temperature, however on the 

fibrous samples it appears as a peak in the curve instead of a rise.  The Tg value for the 

dry as received polymer is 59.2±0.14°C, the Tm value is 109.44°C, and the heat of fusion 

is 117.81 mJ.  This is consistent with the values reported by Chu et al. [6]  Figure 10 

contains the as received polymer scan from 25° to 160°C.   

The data from the as received sample that was heated to 160°, cooled back to 25° 

and then reheated to 160°C is shown in Figure 11.  The purpose of this scan was to 

determine the crystallization temperature range of the polymer.  As can be seen in the 

thermogram, crystallization does not occur during cooling, or upon reheating.  Some 

polyesteramides show a marked affinity for chloroform, leading to a tendency to form 

regular conformations within the solvent.[7]  Chloroform was used during the synthesis 

of the PEAs studied here, so this melting peak in the as received polymer may be the 

result of a solvent effect.  Once the polymer has been melted, this is no longer a factor. 

The fibrous samples did not show a melting point, however each displayed a glass 

transition temperature.  This temperature was fairly consistent throughout all of the 

charts, and the Tg value for the fibrous samples is 51.9±1.5°C.  This is an average of the 

values collected from the three drawn samples and the three annealed samples.  Figure 

12 contains a chart of the three drawn samples plotted together for comparison.  Figure 

13 shows the same with the annealed samples.  The Tg was expected to increase 

following the processing of the polymer into fiber.   
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Figure 10. DSC As received 4-Phe-4 Scan 
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Figure 11. DSC Reheated As received 4-Phe-4 Scan 
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Figure 12. DSC 4-Phe-4 Drawing Comparison 
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Figure 13. DSC 4-Phe-4 Annealing Comparison 
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The solvent effects mentioned earlier in regards to the Tm in the as received 

polymer scan may be the reason the Tg was higher in the as received sample than in the 

drawn samples.  The as received 4-Phe-4 seems to have maintained a regular 

conformation even after the solvent has been extracted through drying.  However, once it 

has been melted or processed, the solvent is not there to help it recrystallize.  This is 

likely the reason for the lower Tg values in the spun fiber, and could be tested by 

precipitating polymer out of solution and conducting WAXD and DSC testing to 

determine the presence of crystallinity. 

The peaks (heat absorbed) located in the Tg region of the annealed fibers require 

more energy than those of the drawn fibers.  These peaks likely represent an enthalpic 

relaxation instead of the rise associated with a change in Cp normally seen.  Evidently this 

is related to some structuring of the polymer, but not equivalent to actual crystallization, 

as no obvious melting point and heat of fusion is observed.  There is a very broad hump 

in the curves for the annealed samples at temperatures well above the glass transition 

which likely represents relaxation of the chains. 

The nucleated 4-Phe-4 samples behaved similarly to the original 4-Phe-4 spun 

fiber in the DSC, as is shown in Figure 14.  The average Tg for the nucleated fibers is 

47.7±0.3°C, which is slightly lower than the 52°C value of the original 4-Phe-4 fibers.  

Again, there is no melting peak, and nothing to indicate the presence of crystallinity in 

the x-ray data.  The nucleating agent or the change in processing conditions appears to 

have slightly strengthened the polymer, but was unable to induce crystallinity.   
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Figure 14. Nucleated 4-Phe-4 DSC Scans 
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 4.1.8 Wide Angle X-Ray Diffraction 
 

Images scanned from the 4-Phe-4 pinhole patterns are shown in Figures 15 and 

16.  The actual pinhole patterns are in Figure 17.  There are two peaks of interest in some 

of these plots.  One is a small peak corresponding to a small inner circle near the center 

of the image; the larger peak corresponds to the next halo out.  Neither peak is sharp 

enough to represent appreciable crystallinity within the polymer, except in the case of the 

as-received polymer, which also showed a clear melting point in the DSC curve.  These 

peaks appear in the same general area in all of the scans.  The small peak occurs at 

approximately 11.3° 2θ, and the larger peak occurs at approximately 19.6° 2θ.  The peak 

occurring at 11.3° 2θ in the As Received scan in Figure 15 is more pronounced than in 

the other scans, and the peak at 19.6° 2θ is much more narrow than in the other samples.  

These are strong indicators of a higher degree of order in the as received polymer than 

can be attained through melt processing and drawing. 

The pinhole patterns indicate that there is never really any crystallinity in the 

polymer after it has been melt processed.  There is orientation developed in the samples, 

and this can be seen in the pinhole patterns in Figure 17.  Figure 17g starts to look like it 

has some orientation, because of the 2 brighter arcs on each side of the halo.  To some 

extent, this is also true of Figure 17f, but the lower draw ratio did not produce quite as 

dramatic an effect.  This is more easily seen in Figure 17m which shows the azimuthal 

variation of intensity of the 19.6° 2θ peak for the 4x and 6x drawn samples.  For an 

unoriented (random) sample, this intensity would be constant around the ring.   
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Figure 15. 4-Phe-4 WAXS Patterns 
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Figure 16. Nucleated 4-Phe-4 WAXD Patterns 
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Figure 17. 4-Phe-4 Pinhole Patterns 
a) As received, b) Spun Fiber, c) 77°C Annealed Fiber, d) 72°C Annealed Fiber, e) 
68°C Annealed Fiber, f) Drawn 4x, g) Drawn 6x, h) Annealed 4x, i) Annealed 6x, j) 

Nucleated Spun Fiber, k) Nucleated Drawn 2x, l) Nucleated Drawn 3x, m) 
Azimuthal Scans around the 6x and 4x Pinhole Patterns 
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The nucleated sample that was drawn 3x in Figure 17l shows fairly extensive molecular 

orientation as a result of the processing conditions.  All of the samples look amorphous, 

however, regardless of any modifications designed to induce crystallinity. 

4.1.9 Optical and Mechanical Properties 
Draw ratios were back calculated from the diameter of the drawn fiber and their 

birefringence values were measured.  In Figure 18, Birefringence is plotted versus Draw 

Ratio for the 4-Phe-4.  There is an overall trend towards the higher the draw ratio, the 

higher the birefringence.  The charts in Figure 19 show examples of the stress strain 

curves of the 4-Phe-4 as spun fiber and the 4-Phe-4 4x drawn fiber.  The as-spun fiber is 

very brittle; exhibiting very little ductility.  Drawing improved the ductility and the 

overall strength of the fiber substantially.  The charts in Figures 20 - 22 show trends in 

mechanical properties versus birefringence for the all of the tested fibers.   

With the 4-Phe-4, for both the ultimate tensile strength and the yield strength, as 

the birefringence increases, so does that mechanical property.  This trend is somewhat 

evident in the elastic modulus, however it is not as profound as it is in the other two 

cases.  The use of the nucleating agent seemed to increase the fiber stiffness and decrease 

its ductility.  The high modulus values shown in Figure 20 relate to the stiffness, which is 

greatly increased from the original 4-Phe-4.  Yield strength values in Figure 21 are 

unchanged within reasonable error between the original and nucleated fibers.  Tensile 

strength values are shown in Figure 22 and are the evidence of lower elongation to break.  

The addition of the nucleating agent seems to have caused a stress concentration within 

the fibers.  This leads to crack initiation under load, and results in the lower elongation to 

break.  
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Figure 18. 4-Phe-4 Draw Ratio vs. Birefringence 
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Figure 19. 4-Phe-4 Stress Strain Curves 
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Figure 20. Modulus vs. Birefringence 
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Figure 21. Yield Strength vs. Birefringence 
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Figure 22. Ultimate Tensile Strength vs. Birefringence 
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4.1.10 Preliminary Shrinkage and Hydrolysis Testing 
The water shrink test was conducted as another way to test the orientation of the 

drawn fibers and determine if crystallinity occurred during drawing.  This test was 

conducted at 75°C.  With the shrink test, the as spun fiber and annealed fibers were the 

least reactive, while the drawn fiber shrank a great deal.  The fact that 75°C is well above 

the Tg and the lack of crystallinity, explains why the drawn fibers shrink to the extent that 

they do.  Based on this, the 6x fiber could be expected to shrink up to 83%.  Annealing 

was conducted at 68°C prior to testing.  This heating suggests that while the length 

remained unchanged during annealing due to the sample holder, orientation was lost due 

to chain mobility at the higher temperatures.  Since the bulk of the orientation had already 

been relaxed, the annealed samples were not as susceptible to shrinkage.  Had there been 

some crystallinity, the chains oriented by drawing would have been more stable and 

restricted by their conformation.  These results are shown in Table 5. 

The hydrolysis test was conducted to see if degradation and orientation change 

could be induced by the presence of water at 37°C.  Birefringence measurements were 

taken once the samples were removed from the water and allowed to dry.  These values 

are given in Table 6.  It is clear from the results that no changes in orientation took place 

from the exposure to water at this temperature. 

4.1.11 Compression Molding 
Milled 4-Phe-4 was used to create compression molded sheets of thin film.  This 

polymer responded fairly well to the heat and pressure.  The film was brittle, but not to 

the point that it could not be handled.   
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Table 5. Shrink Test Results 
4-Phe-4-F 4-Phe-4-F-6x 

Li (in.) 6 Li (in.) 6 
Lf (in.) 4.54 Lf (in.) 1.3 
% change 24 % change 78 

4-Phe-4-F-A 4-Phe-4-F-A6x 
Li (in.) 2 Li (in.) 2 
Lf (in.) 1.57 Lf (in.) 0.896
% change 21 % change 55 

 

Table 6. Hydrolysis Test Results 
Birefringence  Diameter

(Δn) (μm) 
Untreated 0.0200 81.25
1 Hour 0.0215 74.75

1 Day 0.0215 81.25
5 Days 0.0219 81.25
10 Days 0.0215 78.00
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While some bubbles were present in the film, much of the sheet that was used in the 

biaxial stretcher was free of defects.  Film was successfully stretched uniaxially in 

constrained and unconstrained conditions.  Biaxial stretching was not attempted due to 

problems with the machine grips and low amounts of polymer.  Birefringence 

measurements were taken of the film, and the film was exposed to creep testing via the 

DMA. 

 

4.1.12 Optical Properties of Film 
The birefringence values were calculated from the retardance measurements of 

each sample.  Draw ratio values were obtained by drawing 1 cm lines on the film samples 

prior to stretching.  Separation of these lines was then measured to get a more accurate 

assessment of how the film drew.  While specific draw ratios were set during machine 

preparations, the films did not stretch uniformly.  In an effort to be more accurate, the 

measured draw ratios were used instead of the supposed values from the machine setup.  

Samples were cut from what seemed to be the most uniform parts of the film.  With both 

the unconstrained samples and constrained samples, the expected increase in 

birefringence with increasing orientation is seen.  These values are shown in Figure 23.   

The values of birefringence measured for the film are lower than those found for 

the fiber.  There are two possible reasons for this.  The fibers were initially partially 

oriented during spinning as they were pulled at high speeds from the extruder to the take-

up roll.  Thus, the fibers were exposed to a two-step drawing operation.  The compression 

molded sheets developed no orientation during compression molding, so it would make 

sense that they would orient less than the fiber.   
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Figure 23. Draw Ratio vs. Birefringence 4-Phe-4 Film 
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But of greater importance, the temperature used for the fiber drawing was significantly 

lower than the temperature used for the film.  It is likely that the increased chain mobility 

caused by the higher temperature resulted in a loss of overall chain orientation even 

though the film and fiber had similar draw ratios. 

 

4.1.13 Dynamic Mechanical Analysis 
Due to time constraints, sufficient data could not be collected at varying 

temperatures in order to perform time-temperature superposition.  The initial load was 

chosen based on the yield stress results of the drawn fibers obtained during tensile 

testing.  According to Pego, it is typical to make the applied stress 5-30% of the yield 

stress for biomedical polymers, however these values appeared to be too small and the 

sample experienced non uniform strain. [18] The load of 50% YS provided realistic 

results, even though 50% is much higher than the anticipated load.  Tests were conducted 

at 37°C to simulate body conditions.  The chart shown in Figure 24 indicates that both 

the constrained and unconstrained film samples undergo secondary creep during static 

loading.   The values for creep compliance are shown in the chart in Figure 25.  The 

constrained film samples appear to creep at a faster rate than their unconstrained 

counterparts.  This is likely due to the slight orientation in the transverse direction from 

contact with the grips in the stretcher, and slightly lower orientation in the primary stretch 

direction.  The unconstrained film is all oriented in the direction of stress, and is therefore 

slightly more resistant to creep than the constrained film. 

 

 

58 



www.manaraa.com

0.099

0.1

0.101

0.102

0.103

0.104

0.105

0.106

0.107

0.108

0 20 40 60 80 100 120 140 160 180 200

Time (min)

%
 S

tr
ai

n 
(m

)

Constrained

Unconstrained

 
Figure 24. %Creep Strain vs. Time 
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Figure 25. Creep Compliance vs. Log Time 
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4.2 PEAs 4-Phe-Das and 8-Phe-Das 

4.2.1 Melt Flow Indexing 
Melt flow experiments were conducted on the 4- and 8-Phe-Das polymers, 

however, both moved through the barrel too quickly to gain an accurate melt flow rate 

measurement.  Temperature trials were run from 110-150°C.  Based on the quality of the 

extrudate, a die temperature of 135°C was chosen for melt spinning. 

 

4.2.2 Dilute Solution Viscosity 
The intrinsic viscosity of the 4- and 8-Phe-Das polymers was quite low, and likely 

the reason for the poor processability and brittleness.  The viscosity value sent by Dr. 

Chu was 0.2 dl/g.  This is very close to the measured values of 0.27 dl/g for all das 

samples tested.   

 

4.2.3 Melt Spinning 
The 4-Phe-Das and 8-Phe-Das as received polymers were dried extensively prior 

to melt spinning to remove solvent and excess water.  They were dried at 50°C, which 

was chosen based on DSC results.  Prior to drying, the as received polymers lay in flat, 

hard sheets that after being broken into smaller pieces would have theoretically been easy 

to load into an extruder.  As the solvent and water gases were released in the vacuum 

oven, however, the polymer expanded and became very soft and airy (i.e. full of 

bubbles).  These pieces would be difficult to steadily pass through the extruder in the 

hopes of making decent fiber samples.  Instead, a larger die was initially used and the 

polymer was extruded into rod and pelletized.  The pellets were much more manageable 
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when filling the barrel of the extruder, and were not in danger of jamming the screw at 

the entrance of the hopper. 

Once the pellets were formed, two bobbins were wound for each polymer.  The 

diameters were significantly larger than the 4-Phe-4 fiber due to the slower spinning 

conditions needed to keep the spin-line from breaking.  The diameter for the as spun fiber 

ranged primarily from 220-270 μm.  A small amount of 4-Phe-Das was wound at higher 

speeds, and produced fibers of diameter 75 μm. 

4.2.4 Drawing and Annealing 
After spinning the 4- and 8-Phe-Das, drawing was attempted in the hopes of 

improving the mechanical properties of the fibers and reducing their brittleness.  

However, since the fibers were so brittle, it was extremely difficult to wind them through 

the drawing machine.  The fiber repeatedly broke as it was coming off of the bobbin and 

as it was being wound onto the warm rollers on the machine.  To avoid problems with the 

bobbin, small segments were then tested.  These segments were 2 feet in length with a 2 

inch section marked in red.  These segments were wrapped repeatedly around the warm 

rolls with an attempt at keeping tension on both ends of the fiber.  In this case, the fiber 

appeared to draw, however further examination of the 2 inch area shows that this was not 

the case.  Instead of drawing, the fibers looked like they were necking in places and 

beginning to fail.  The diameter throughout the 2 inch section was inconsistent.  It is 

unknown at this point if the fiber can be drawn at all.  It is possible that passing the fiber 

through a warm tube before attempting to wrap it around the rolls might reduce breakage 

at that end, but that does not solve the problem of the fiber breaking as it is pulled from 

the bobbin. 
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4- and 8-Phe-Das Fibers were annealed, successfully, at both 65° and 70° C.  

Time trials were conducted at both of these temperatures to see how the fibers reacted.  

These times were 60 minutes, 90 minutes, and 4 hours.  Upon completion of these trials, 

it seems that the time did not matter as much as the temperature when attempting to 

reduce orientation.  The 4-Phe-Das seemed to respond to both temperatures, contracting 

as much as possible in the rack they were mounted in.  The 8-Phe-Das fibers did not 

show much change, and it is possible that a higher temperature is needed for these fibers.  

These annealed samples were tested by DSC and WAXD, and tensile testing and 

birefringence measurements were made.   

 

4.2.5 Differential Scanning Calorimetry 
A DSC scan for the as-received 4-Phe-Das polymer is shown in Figure 26. The 

Tg for this sample is about 40.0°C. There is an endothermic peak at approximately 

104°C.  On first examination, it appeared that the endotherm represented melting of 

crystals. But since the X-ray pattern of this sample indicates there is no crystallinity, 

another explanation is needed. The value of Tg for this as received 4-Das polymer is 

substantially lower than for the as-spun and annealed samples. This behavior is most 

likely caused by the solvent and water retained in the as received Das sample. When 

heated in the DSC, the retained solvent and water initially plasticized the polymer.  The 

release of the solvent and water vapor evidently account for the endotherm.  A somewhat 

similar behavior is found for the 8-Das sample, and is interpreted the same way.  

The average Tg for both the as received 4- and 8-Phe-Das is 40°C, and the 

average for the spun fibers for both is 57.9±0.5°C.   
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Figure 26. 4-Phe-Das As received DSC Scan 
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Figure 27 shows DSC scans for the different annealing treatments for the 4-Phe-Das 

polymer, and Figure 28 shows the same comparison for the 8-Phe-Das.  The scans do not 

show much difference between samples.  Both the as-spun and annealed scans exhibit a 

hump beginning around 105°C and ending around 160°C.  These humps in the curve 

appear to indicate instability within the chains as they relax during heating.  This is also 

evident by the lack of a solid baseline in the annealed comparison.  This could be due to 

retained solvent, causing an endotherm as they are released while the polymer softens.  It 

may also be due to severe contraction of the pieces of fiber resulting in loss of contact 

with the pan during testing. 

 

4.2.6 Wide Angle X-Ray Diffraction 
All of the 4- and 8-Phe-Das wide angle x-ray diffraction patterns are similar with 

no exceptions.  This statement includes the as received polymer, the as-spun fiber, and 

the annealed fibers. The 2θ scans for the as received and spun 4-Phe-Das are shown in 

Figure 29, and the scans for the as received and spun 8-Phe-Das are shown in Figure 30.  

The pinhole patterns are included in Figure 31.  There is no crystallinity present within 

any of the fiber samples tested, nor do they appear to have any chain orientation. It is 

possible that were drawing an option, there would be some orientation within the fibers, 

but the fibers were so brittle, that drawing was not possible. 

 

4.2.7 Optical and Mechanical Properties 
The birefringence values are included in Table 7.  These values are quite low, 

indicating virtually no orientation within the fibers.  This agrees with the x-ray patterns in 

Figure 31.   
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PEA 4-Phe-Das Annealed DSC Comparison
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Figure 27. 4-Phe-Das DSC Annealing Comparison 
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PEA 8-Phe-Das Annealed DSC Comparison
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Figure 28. 8-Phe-Das DSC Annealing Comparison 
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Figure 29. 4-Phe-Das WAXD Patterns 
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Figure 30. 8-Phe-Das WAXD Patterns 
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Figure 31. 4- and 8-Phe-Das WAXD Pinhole Patterns 
a) 4-Phe-Das As received, b) 4-Phe-Das Spun Fiber, c) 4-Phe-Das Annealed Fiber, d) 

8-Phe-Das As received, e) 8-Phe-Das Spun Fiber, f) 8-Phe-Das Annealed Fiber 
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Table 7. 4- and 8-Phe-Das Optical and Mechanical Data 

Sample Birefringence (Δn) Modulus 
(MPa) 

Tensile 
Strength (MPa) 

4-Phe-Das-F 0.00341±0.0028 2337±518 100.02±7.7 

4-Phe-Das-F-A65 0.0014±0.0001 1306±206 58.38±9.7 

4-Phe-Das-F-A70 0.00124±0.0001 1214±55 44.57±12.1 

8-Phe-Das-F 0.00103±0.0003 1761±407 63.21±6.2 

8-Phe-Das-F-A65 0.00105±0.0001 1315±265 56.12±11.5 

8-Phe-Das-F-A70 0.00117±0.0001 1517±325 66.5±13.9 
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The optical and mechanical properties of the 4- and 8-Phe-Das did not appear to 

remarkably change following the annealing process.  The birefringence values for the as 

spun and annealed fibers are quite low, indicating very little chain orientation.  The 

values for modulus and ultimate tensile strength listed in Table 7 are very close in value 

to the as spun 4-Phe-4.  Yield stress could not be calculated, because the fibers did not 

yield.  They broke almost immediately upon loading.  The modulus, tensile, and 

birefringence values listed are averages of six samples.  

72 



www.manaraa.com

Chapter 5. Summary and Conclusions 
 

Following melt flow indexing trials, the three poly(ester amide)s were processed 

into fiber by  melt spinning.  The extrusion parameters were decided upon by both melt 

flow indexing and DSC.  Die temperatures of 181°, 187°, and 185°C were used for the 

pure 4-Phe-4 and 150°C was used for the nucleated polymer.  4-Phe-Das and 8-Phe Das 

were processed at die temperatures of 135 and 140°C respectively.  Post extrusion 

drawing and annealing were conducted on the 4-Phe-4 fibers in an attempt to induce 

orientation and crystallinity.  Fibers were drawn at temperatures of 56°C and 48°C, and 

subjected to annealing temperatures of 77°, 71°, and 68°C under constant length.  The 

nucleated fibers were drawn at 28°, 44°, and 46°C, but were not annealed.  The 4-Phe-

Das and 8-Phe-Das fibers were annealed at 65° and 70°C, but were unable to be drawn 

due to their extreme brittleness. 

Drawing leads to an increase in the mechanical and optical properties in both the 

original and nucleated 4-Phe-4.  This is due to orientation of the polymer chains in the 

load direction.  WAXD pinhole patterns provide a visual representation of the amorphous 

polymer becoming oriented following drawing.  The addition of the sodium benzoate 

increased the modulus of the fibers, however it decreased the tensile strength.  This 

implies that the nucleating agent increased the fiber stiffness, but provided stress 

concentrations within the fiber that lead to a lower elongation to break.     

Spun fibers of 4-Phe-4 exhibit a decrease in Tg from the as received polymer 

value.  This is likely a result of the solvent used during synthesis.  The as received 4-Phe-

4 seems to have formed a regular conformation due to solvent effects during synthesis, 
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and has kept this conformation through drying and release of any remaining solvent.  

Once melted, however, there is nothing to push the polymer back into an ordered 

structure.  This would explain both the decrease in Tg, as well as the loss of Tm.  The 4-

Phe-Das and 8-Phe-Das did not exhibit this solvent induced regular conformation.  Once 

the solvent had been released, the as received and spun fibers maintained similar thermal 

profiles.  The expected increase in Tg occurred following processing.   

4-Phe-4 films were successfully compression molded at 140°C, and were drawn 

at 110°C.  Due to higher drawing temperatures and no induced orientation during 

molding, these films have lower birefringence values than the drawn fiber.  These film 

samples also underwent secondary creep at 37°C.  Given more time, data could be 

collected for longer time periods and at different levels of stress to determine at what 

point, the material would fail under creep conditions.   

The synthesis carried out by Dr. Chu likely resulted in the formation of an atactic 

polymer, which would explain why crystallization could not be induced.  To improve the 

properties of the 4-Phe-4, stereoregularity should be induced during synthesis.  Another 

recommendation during synthesis would be to increase the molecular weight.  Producing 

polymer of higher molecular weight would increase the spinnability and result in a less 

brittle fiber.   
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Chapter 6. Future Work 
 

To achieve a better understanding of the effects of solvent, DSC and WAXD tests 

should be conducted on polymer that has been precipitated from solvent.  Depending on 

these results, solution spinning could be revisited with a better understanding of the 

parameters needed to produce fiber.  Solution spinning still appears to be the most 

plausible method of producing semi-crystalline fibers with the current 4-Phe-4 polymer. 

With more polymer, the melt spinning parameters could be revised and improved 

upon.  The parameters used during spinning with the nucleating agent were a vast 

improvement over the original conditions.  These parameters likely provided the greatest 

impact upon the changes in modulus and the easier drawing.  Another round of testing 

could improve these properties further, and without the stress concentrations caused by 

the nucleating agent, testing could be done to determine if elongation to break and 

ultimate tensile strength increase as a result of better spinning conditions. 

Finally, a more comprehensive creep study would be useful in determining 

appropriate medical applications for the 4-Phe-4.  The film samples should be tested 

under various loads that are applicable to real world situations.  Time and temperature 

trials would be useful as well to gain overall knowledge of how the polymer behaves.   
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